
heat conductivity of the medium; o~ Stefan -- Boitzmann Constant; T, eemperature, ~ x~j 
o p t i c a l  t h i c k n e s s  f o r  u n i t  p o r o s i t y .  

I. 

2. 

o 
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THERMAL INSTABILITY OF A VISCOELASTIC FLUID LAYER 

WITH LIFT AND THERMOCAPILLARY FORCES TAKEN 

INTO ACCOUNT 

F. A. Garifullin IIDC 532.135 

The stability problem of a viscoelastic fluid layer of integral type is investi- 
gated by the Fouriermethod during heating from below. The simultaneous effect of 
the lift and thermoeapillary forces is taken into account. The critical values of 
the Rayleigh and Marangoni criteria are determined. 

The stability of a horizontal viscoelastic fluid layer heated from below has been con- 
sidered up to now only under the effect of Archimedes forces [i, 2]. However, another in- 
stability mechanism is possible -- the change in the thermocapillary forces on the free fluid 
surface [3]. In the general case, instability can originate as a result of the simultaneous 
action of these two forces. 

Let us consider an infinite horizontal viscoelastic fluid layer bounded from above by 
an undeformable free surface and from below by a solid mass of finite thickness and heat con- 
ductivity (Fig. i). The surface z = --dx is maintained at the constant temperature T~, and 
heat is transmitted from the free surface z = d to the surrounding medium with temperature 
T~ by convection. 

The thermal boundary conditions of this problem can be formulated in the form 

T-----T o for Z-------d i, (1) 

OT i OT 
T = Tt, ~r Oz ~ for z = 0 ,  (2) 

Oz 

The amplitude 
marion in the form 

OT 
(T- -T2  ~ 2 1 5  for z = d .  (3) 

Oz 
equations of the perturbed state are written in the Boussinesq approxi- 

[ ~ P r - ~ - - , ( ~ ) ( D Z - - ? z ) I ( D Z - - ? 2 ) W = - - R ? 2 O  , 

( ~ - - D 2 - i - ? z ) O = W ,  

( D Z - - ~ - - ~ / ~ ) O  t = O. 

dimensionless variables [2] were hence used. The previous 

The boundary conditions for the perturbations are expressed by the following depen- 
dences: 

@ (0) = O~ (0), DO (0) = ~DO~ (0), 

O i ( - L ) = 0 ,  L=d~/d,  

(4) 

(5) 

(6) 

(7) 

(8) 
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TABLE i. 
stability 

m 

0 
0,1 
1,0 
10 

100 
1000 

R,T 

r " //// /, 

Fig. i. Fluid heating diagram. 

Values of the Critical Parameters for Monotonic In- 

M, 

48,13 
58,31 
96,70 

38.5,4 
3153,8 

30797,8 

A= 

0,0 
1,06 
1,71 
2,42 
2,69 
2,73 

R, 

32,12 
38,57 

517,8 
727,1 
808,8 
817,2 

0,0 
1,03 
1,65 
2,11 
2,25 
2,27 

A=** 

M, 

79,82 
83,66 

116,56 
416,13 

3307,6 
32441,3 

1,99 
2,03 
2,25 
2,74 
2,97 
3,00 

669,2 2,076 
684,4 2,12 
772,7 2,35 
988,5 2,63 

1084,3 2,68 
1099,2 2,6.9 

where the conditions 

W (0) = DW (0) = W (1) = 0 ,  (9) 

DO (1) = - -  B O  (1), D~W (1) = - -  M ~ 0  ( 1)(1 + oL). (10 )  

exist on the surface. The solution of (6) that satisfies condition (8) is 

@t(z) = Csh[(y z + cr/z)l/2(L + z)], (11) 

where C is an arbitrary constant. Condition (7) permits writing 

DO (0) = AO (0), (12) 

where 

A = ~(~,~ + crib) '/2 cth [L (1,2 + o / ~  ~/2l. 

The thermal boundary conditions (12) include the two limit eases 

A = 0, (De (0) = 0), A = oo, (0 (0) = 0). 

The first ease corresponds to a boundary with perfect heat insulation (x<< I) and the second 
to perfectly heat conducting boundaries (z >> i). 

To solve the problem, let us use the Fourler-series expansion method. Following the 
procedure described in [4-7], the perturbation amplitudes can be approximated by the expres- 
s ions 

• [ 2 D~W (1) 2 D2 W (O) q_ W (z) = A,~ + (--  1) n (nn) 3 . - -  (nu)------ ~ 

q- nn2 ( _  l)n+tW(1 ) q_ ~nrc W(0)] sin nrcz, (13) 

n==l 

Use of these dependences in (4) and (5) results in a system in the unknown coefficients An, 
Bn. 
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TABLE 2. Values of the Critical Parameters for Vi- 
brational Instability 

I ~+ Pr [ ?,  o+,  R, 

O,1 

l 1 / 3,81 (3,37) 

I0 1 6,39 (6,21) 
100 I 8,76 (7,52) 

6,51(6,47) 
66,2 (63,32) 
78,7 (77,3) 

860,06 (863,38) 
215 (216,27) 
132 035,2) 

The boundary conditions (i0) yield a system of homogeneous algebraic equations in the 
unknowns D2W(1), D3W(0), O (i), and O (0). The 
solvability condition 

c~O) ,,-co) ~.3 +I /2 )  

C~,) /~3 + ~ / , - 1 o )  B +  1 _) 

M = C(2~ - -  C]~ 
C~ ~ C~'~ 

v2,(~) Cr '~ C~~ 

C~ ~ C(# 

Here we used the notation 

eigenvalue equation is obtained from the 

C!O)+ A + I  ) 

(c(o) s + 1/2) 

C~~ RV2 
C(O) A + 1 ) ~ + ~  

'"(1) ~3 + 1/2) 

_ C~~ 

(15) 

E (re=O, 1), N~ 
C("1 = (-- 1)m"X,~ [a Pr-' + q~ (o)X,d(X,~ + ~I)--R~I 2 

a=l  

cW .~= (_  1)m. N. 2 (X. + ~) (m = 0, 1), 
= X. [~Pr -t + # (g)X,d(X,~ + ~ ) -  R'~ ~ (16) 

C~m) ~- E ( -  l)mn (re=O, l), 
X,~ (a + "#)[o Pr-i + , (e )X,d- -  R~l 2 

.=t X~ [o Pr -i + ,(~) Xn](X ~ + o) - - R ~  

The numerical realization of the results (15) were produced on a "Minsk-222" electronic com- 
puter. Certain particular cases were examined. 

MONOTONIC INSTABILITY 

The expression (14) can then be written as 

M =M(R, v, A, B). (17) 
The magnitudes of the critical Rayleigh and Marangoni numbers were calculated for two bound- 
ary conditions: A= 0, A = ~. 

Setting R = 0 in (17), the critical Marangoni numbers can be obtained, which govern the 
stability threshold because of the action of only thermocapillary forces. When M = 0, an in- 
stability originates under the effect of only lift forces. 

Values of the critical Marangoni and Rayleigh numbers, obtained for the cases A = 0 and 
A = ~, are presented in Table I. It is seen from the table that R, and M, grow with the rise 
in B. A more unstable situation corresponds to the case when B = 0. Then R, has a finite 
value with the rise in B while M, tends to infinity. This tendency is explained in the fol- 
lowing manner. The increase in B from 0 to ~ denotes a change in the thermal boundary con- 
ditions from D| 0 to | = 0. Therefore, when B is small there is still great freedom for 
the development of temperature perturbations while for large B the temperature perturbations 
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0 

Fig. 

M./d s 

2. Neutral stability curves (B = ~, Pr = i0 a, 
A = ~) (numbers at the curves are values of the 
elasticity parameter l+) (a) and influence of the 
boundary conditions on the neutral stability curve 
[R = 0, Pr = i0 a, ~+ = 1.0. Curve i) A = O, B = 0; 
curve 2) A = ~, B = 0; curve 3) A = 0, B = i0] (b). 

damp out. In this case the influence of the thermocapillary effect is considerably less than 
the influence of the lift forces on the origination of a convective instability. 

Values of the critical parameters obtained for certain particular cases are in good 
agreement with the results in [4~ 5, 7-10]. 

VIBRATIONAL INSTABILITY 

The eigenvalue equation (15) generally yields a complex Marangoni number 

M = Mi (Y, R, Pr, A, B, ~, ~)+ i~M~ (y, R, Pr, A, B, ~, ~), (18) 

where MI, Ma are real functions and ~ is the frequency of vibration. Since M should be real, 
the following relationships are valid: 

=0 or M S=0 (19) 

It has been shown in [7, 8] for the case A = ~ that no real value of m exists which 
satisfies Mz = 0. For A = 0 an analogous result is obtained. However, when B = 0 and Pr = 
0, there is a real value of m which satisfies the condition M2 = 0. The values of m are 
hence real only as y + 0 and R > 6720. The neutral vibrational instability curve however 
lies in an unstable domain for stationary convection [7, 8, Ii]. 

To determine the critical parameters governing the stability threshold, we used an in- 
tegral model of a viscoelastic fluid [i]: 

(a) 0o = ~ N (T) exp (--- ~T) d~ = ~ (~). (20) 
0 

For a = 0, ~o = ~(0) is the greatest Newtonian viscosity. We should set ~ = i~ on the thresh- 
old for the origination of a vibrational instability. Then 

(i~) : Ni (m) -- i~z (m). (21) 

The known relationships [12] were used for the complex viscosity components ~(im). It was 
assumed that the dimensionless quantities satisfy the relationships ~+m+ = ~m, where ~ is 
the fluid relaxation time, and ~+ = l~/d 2 is the elasticity parameter. 

For B = ~, A = ~, the problem about the origination of a vibrational instability is ob- 
tained for perfectly heat conducting nonsymmetric boundaries. Then the dependence for neu- 

tral stability degenerates into the form 

(X n -~- i~) N~ = 0. (22) 
E (-- X~[i~ Pr + ~ (i~)/~o.X~I(X~ + i~) -- RY 2 1) -~ 
n ~ l  
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Results calculated by means of this formula are presented in Table 2. For m = 0 values 
are obtained for the critical Rayleigh number R, = II08.8 at y* = 2.71, which almost agrees 
with results known in the literature. 

We solved a problem with nonsymmetric boundary conditions for a viscoelastic fluid sep- 
arately. The Galerkin method was applied, where the following approximation was used: 

W(z) = "~ amW~(z ), O(z )=  ~] b~e~(z), (23) 

where am, b m are unknown coefficients. 

The basis functions satisfying the boundary conditions (7) and (8) are odd: 

sh (p~z) sin (p~z) 
W (z) , (24) 

sh (p~/2) sin (p~/2) 

where ~m are positive roots of the equation 

cth ~ - -c tg  ~ = O. (25) 
2 2 

The numerical realization on an electronic computer was carried out for m = 2. Values of 
the critical parameters are presented in parentheses in Table 2. The agreement of the 
data indicates reliability of the results obtained from (15). The neutral stability curve 
is presented in Fig. 2a for different values of the elasticity parameter %+. 

The neutral stability curve stands off from the line R/R, + M/M, = 1 as the fluid elas- 
ticity increases. As in the monotonic instability case, it can be expected that the straight 
line R/R, + M/M, = 1 will correspond to the case when the connection between the two reasons 
for the origination of convection (lift and thermocapillary forces) is perfect, while two 
lines R/R, = i, M/M, = 1 show the noninterrelated action of two forces. 

Therefore, the connection between the two reasons for the origination of convection be- 
comes weak as %+ increases. Convection can occur only because of the lift or thermocapil- 
lary forces. 

The influence of the Bier number on the relative location of the stability curves is 
presented in Fig. 2b. The value of the critical Marangoni number drops with the rise in B. 

The influence of the lower boundary is analogous to the monotonic instability case. 

Therefore, the fluid elasticity exerts a destabilizing effect during the action of the 
lift and thermocapillary forces. 

NOTATION 

T, TI, T~, T ~ 2, temperature in the fluid, the plate, in the lower plate surface, and the 
surrounding medium, respectively; d, d:, fluid layer and plate thicknesses; ~, coefficient 
of heat elimination; ~, ~, coefficient of fluid and plate heat conductivity; z, running ver- 
tical coordinate; 8, temperature gradient in the fluid; W, @, velocity and temperature per- 
turbation amplitudes in the fluid; y, wave number; X, thermal diffusivity coefficient of the 
fluid; 6, coefficient of thermal expansion of the fluid; o, perturbation decrement; %+, elas- 
ticity parameter; | amplitude of temperature perturbation in the plate; s, coefficient of 
surface tension; C, arbitrary constant; ~, vibration frequency; MI, M=, real functions; no, 
greatest Newtonian viscosity; N(T), relaxation time spectrum; T, time; ~(im), complex vis- 
cosity; ~1(m), n2(~), components of the complex viscosity; %, relaxation time; am, bm, C~, 
coefficients; y,, M,, R , critical values of the wave number, the Marangoni number, and the 
Rayleigh number; B = ~dT~, Bier number; M = sBdU/~no, Marangoni number; R = %~vd~/~X, Ray- 
leigh number; Pr = ~/X, Prandtl number; ~ =~/d:. 
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SOLUTION OF A PLANE STEFAN PROBLEM FOR A HALF-SPACE BY 

THE METHOD OF DEGENERATE HYPERGEOMETRIC TRANSFORMATIONS 

M. N. Shafeev UDC 536.421.4 

A method is given for constructing the analytic solution of a plane nonstationary 
Stefan problem. 

Analytical methods of solving multidimensional nonstationary Stefan problems have only 
started to be produced. Methods existing earlier for the solution of such problems ([i, 2], 
etc.) were quite approximate in nature. The general solution of a quasistationary plane 
Stefan problem is obtained in [3]. An analytical method of solving a nonstationary plane 
Stefan problem is proposed in this paper for a half-space in application to the process of 
freezing the ground bounded on one side by a plane and extending without limit to the other 
side. 

Let us consider the problem on the dynamics of the freezing and cooling zones (zones I 
and II) of ground under a plane source of cold located on the surface of a semiinfinite me- 
dlum (ground) (Fig. I). The general formulation of such a problem with two moving boundaries 
is described by the following system of equations and boundary conditions: 

2 O& (x,, x2, x) ' ~ ,  02t~ (x,, x2, ,c) 
o% = a h ~  Ox~ , k = l ,  2, 

t = l  

for k =  I~ (x,, x2)ED~, ,={Ix ,  I<~,(T), O < x 2 < ~ ( x , ,  ~)}; 

for k = 2 ,  (x,, x2)ED~, 2 -- D(~') -V' ~'xn(=)" D~') = {Ix, l ~ ,  (x), 

[(x,, x ) < x 2 < v ( x , ,  T)}; D~ 2~ --{Ix, l>~,(~), Ix, l<v,(~);  

O < x z < v ( x , ,  "0}; x > O ;  

th (x,, Xv O ) =  f~(x, ,  xz); 

t ,(x,,  O, T)-=cpt(x ,, x) for Ix, l<~.,('O; 
on S~,o = {x2 = O, Ix,  I >~ ~+, (+), I x,  I ~< v,  (~)} 

tz(x,, x z, x ) =  ~z(x,, x); 

on S,.,  -= {x z = ~(xi, x), I x i l ~ x ( ' O }  

tk (x,, x2, x ) =  0 

(1) 

(2) 

(3) 

(4) 

(5) 

and 
~ (~I Otl(Xl' X2' T)O%~. -- ~2 0t2(X1' X2' T) ) l/ = AOXi 
i=I 

on S,,2 = ix2 = v ( x , ,  , ) ,  [x,I  ~ < v t ( ' ) }  

t~(x,, x~, ~) : -& (x. x~), 

~J(Xi' x) �9 (6) 
s 

0T 

(7) 
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